Pore network simulation and tomographic visualization of particle aggregates drying

Y.J. Wang, A. Kharaghani, E. Tsotsas

Thermal Process Engineering

DFG - Graduiertenkolleg **Micro-Macro-Interactions** of Structured Media and Particle Systems

FAKULTÄT FÜR VERFAHRENS-UND SYSTEMTECHNIK

Problem definition

Macro

Micro

Pore network model is a suitable tool to examine the pore-scale behaviour of porous media.

➤some physical effects are still absence in the recent model

lack of pore-scale experimental validation

Objective

➤Use X-ray microtomography (µ-CT) to validate the pore network model by drying experiments with particle aggregates.

> Develop and implement liquid film effect in the pore network drying model

Material and experimental setup

Principle of X-ray microtomography

3D structure presented as 2D slices

Experimental setup

CT-ALPHA-160, ProCon X-Ray

Image processing

Cooperation with M.Sc. Maryam Sada Dadkhah

gray scale image

binary image (solid phase)

binary image (liquid phase)

Saturation: S

5

Pore network drying model

Original packing

Add virtual particles

- Boundary layer

Network

Identify boundary layer, network, throats and nodes

evaporation at the liquid-gas interface vapor diffusion in the gas phase

 $\sum_{j} \dot{M}_{v,ij} = \sum_{j} A_{ij} \frac{\delta}{L_{ij}} \frac{P \tilde{M}_{v}}{\tilde{R}T} ln \left(\frac{p - p_{v,i}}{p - p_{v,j}} \right) = 0$ viscous liquid flow

$$\sum_{j} \dot{M}_{w,ij} = \sum_{j} \frac{\rho_{w} \pi r_{ij}^{4}}{8\eta L_{ij}} \left(p_{w,i} - p_{w,j} \right) = 0$$

and balance gravity force

$$\Phi\left(\mathbf{r}_{ij},\mathbf{z}_{ij}\right) = -\frac{2\sigma}{\mathbf{r}_{ij}} + \left(\rho_{w} - \rho_{a}\right)gz_{ij}$$

Comparison – total saturation

- Pore network model predicts fairly the first drying period.
- Drying time is overestimated by the pore network simulation.

Which mechanism enhances drying rate and shorter drying time? ---> liquid film flow ?!

Existence of liquid film

Hydrophilic (HI) glass beads are coated with a hydrophobic (HO) layer Cooperation with M.Sc. Zinaida Kutelova

Macroscopically isolated liquid or hydraulically connected?

HI: S=0.05

8

Existence of liquid film

Drying of KI solution with concentration 73%

68% 39% 32% 4.8% 3% 1.7% dry film

Due to the morphology difference between liquid film and salt crystals, the evaporation front is identified.

Connectivity of liquid film rings

S = 3%

S = 1.7%

At low saturation, the liquid phase remains connected through liquid rings around the particle-particle contact points providing the liquid to the aggregate surface.

Incorporation of liquid rings into pore network model

Ring geometry

Regular pore network with liquid rings

An algorithm for liquid rings drying:

- The emptying sequence and disconnection of liquid rings are all decided by throats.
- There is no vapor diffusion in the network until a ring starts to dry.
- > Ring starts to dry when it is isolated.
- Cluster labelling algorithm should change and take rings into account.

Comparison: PNW with ring and without ring

The film flow provides hydraulic connection between the bulk liquid region and the evaporation surface maintaining the surface partially wet for a longer time.

Comparison: experiment and PNW with ring

Based on the experimental data (geometry, initial drying rate) a 3D regular pore network with rings is generated.

CRP: lasts longer by the liquid rings.

FRP: begins once the liquid rings are detached from the network surface.

Summary

- A micro dryer has been set up inside the X-ray microtomography to perform online micro-scale drying measurements.
- Simulation results of 3D pore network drying model are compared with the experimental ones. The overestimation of drying time may be explained by the absence of liquid film effects.
- The existence and hydraulic connectivity of liquid film have been investigated and proved experimentally (surface wettability and salt solution).
- Pore network model with films leads to a very good agreement with the experimental results.

Thank you for your attention !

Graduate School for Micro-Macro-Interactions in Structured Media and Particle Systems – GRK 1554. The X-ray micro tomographic device has been financed by EFRD European Fund for Regional Development (project no. 1211080002).

EUROPEAN UNION European Regional Development Fund